Data completion algorithms and their applications in inverse acoustic scattering with limited-aperture backscattering data

نویسندگان

چکیده

We introduce two data completion algorithms for the limited-aperture problems in inverse acoustic scattering. Both are independent of topological and physical properties unknown scatterers. The main idea is to relate full-aperture via prolate matrix. simple fast since only approximate inversion matrix involved. then combine with imaging methods such as factorization method direct sampling object reconstructions. A variety numerical examples presented illustrate effectiveness robustness proposed algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Project selection with limited resources in data envelopment‎ ‎analysis‎

‎In this paper allocating a fixed resource for producing ‎finite projects in order to obtaining a desired level of‎ ‎efficiency will be discussed‎. ‎Note that it is assumed that a ‎vector of limited sources is at hand‎. ‎This vector of resources can‎ ‎be contained human resource‎, ‎budget‎, ‎equipment‎, ‎and facilities‎. ‎In ‎any firm there exist different suggestions from subunits for ‎running...

متن کامل

Uniqueness of the Solution to Inverse Scattering Problem with Backscattering Data

Let q(x) be real-valued compactly supported sufficiently smooth function. It is proved that the scattering data A(−β, β, k) ∀β ∈ S, ∀k > 0, determine q uniquely. MSC: 35P25, 35R30, 81Q05;

متن کامل

Inverse obstacle problems with backscattering or generalized backscattering data in one or two directions

This paper is concerned with scattering by a smooth compact obstacle in R. The main results are that for certain classes of obstacles knowledge of the the scattering amplitude in only one or two pairs of incident and reflected directions suffices to recover the Taylor series of a boundary defining function for the obstacle at a point. Thus certain obstacles with real analytic boundaries can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2022

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2022.111550